Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Transl Neurodegener ; 12(1): 13, 2023 03 16.
Article in English | MEDLINE | ID: covidwho-2257673

ABSTRACT

Nasal swabs are non-invasive testing methods for detecting diseases by collecting samples from the nasal cavity or nasopharynx. Dysosmia is regarded as an early sign of coronavirus disease 2019 (COVID-19), and nasal swabs are the gold standard for the detection. By nasal swabs, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acids can be cyclically amplified and detected using real-time reverse transcriptase-polymerase chain reaction after sampling. Similarly, olfactory dysfunction precedes the onset of typical clinical manifestations by several years in prion diseases and other neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In neurodegenerative diseases, nasal swab tests are currently being explored using seed amplification assay (SAA) of pathogenic misfolded proteins, such as prion, α-synuclein, and tau. These misfolded proteins can serve as templates for the conformational change of other copies from the native form into the same misfolded form in a prion-like manner. SAA for misfolded prion-like proteins from nasal swab extracts has been developed, conceptually analogous to PCR, showing high sensitivity and specificity for molecular diagnosis of degenerative diseases even in the prodromal stage. Cyclic amplification assay of nasal swab extracts is an attractive and feasible method for accurate and non-invasive detection of trace amount of pathogenic substances for screening and diagnosis of neurodegenerative disease.


Subject(s)
COVID-19 , Multiple System Atrophy , Prions , Humans , COVID-19/diagnosis , SARS-CoV-2 , Specimen Handling/methods , COVID-19 Testing
2.
Cell Mol Neurobiol ; 43(6): 2621-2626, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2282495

ABSTRACT

Prion' is a term used to describe a protein infectious particle responsible for several neurodegenerative diseases in mammals, e.g., Creutzfeldt-Jakob disease. The novelty is that it is protein based infectious agent not involving a nucleic acid genome as found in viruses and bacteria. Prion disorders exhibit, in part, incubation periods, neuronal loss, and induce abnormal folding of specific normal cellular proteins due to enhancing reactive oxygen species associated with mitochondria energy metabolism. These agents may also induce memory, personality and movement abnormalities as well as depression, confusion and disorientation. Interestingly, some of these behavioral changes also occur in COVID-19 and mechanistically include mitochondrial damage caused by SARS-CoV-2 and subsequenct production of reactive oxygen species. Taken together, we surmise, in part, long COVID may involve the induction of spontaneous prion emergence, especially in individuals susceptible to its origin may thus explain some of its manesfestions post-acute viral infection.


Subject(s)
COVID-19 , Prions , Humans , Animals , Prions/metabolism , Post-Acute COVID-19 Syndrome , Reactive Oxygen Species , SARS-CoV-2 , Mammals/metabolism
3.
Viruses ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: covidwho-2234767

ABSTRACT

Following the cause established twenty-two years ago, the 22nd Annual Rocky Mountain Virology Association meeting was held amidst the resplendent Rocky Mountains within the Arapahoe and Roosevelt National Forests. 116 intellectuals including both regional and international scientists as well as trainees gathered at the Colorado State University Mountain Campus for this three-day forum. Current trends in virology and prion disease research were discussed both in talks and poster presentations. This year's keynote address emphasized innate immune modulation by arboviruses while other invited speakers shared updates on noroviruses, retroviruses, coronaviruses and prion diversity. Additionally, the need for and importance of better approaches for sharing science with non-science communities via science communication was discussed. Trainees and junior investigators presented 19 talks and 31 posters. This report encapsulates selected studies presented at the 22nd Rocky Mountain National Virology Association meeting held on 30 September-2 October 2022.


Subject(s)
Congresses as Topic , Virology , Humans , Colorado , Prions , Retroviridae
4.
Int J Environ Res Public Health ; 19(18)2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2032948

ABSTRACT

Numerous fires occurring in hospitals during the COVID-19 pandemic highlighted the dangers of the existence of an oxygen-enriched atmosphere. At oxygen concentrations higher than 21%, fires spread faster and more vigorously; thus, the safety of healthcare workers and patients is significantly reduced. Personal protective equipment (PPE) made mainly from plastics is combustible and directly affects their safety. The aim of this study was to assess its fire safety in an oxygen-enriched atmosphere. The thermodynamic properties, fire, and burning behavior of the selected PPE were studied, as well as its mechanical and electrostatic discharge properties. Cotton and disposable aprons were classified as combustible according to their LOI values of 17.17% and 17.39%, respectively. Conall Health A (23.37%) and B/C (23.51%) aprons and the Prion Guard suit (24.51%) were classified as self-extinguishing. The cone calorimeter test revealed that the cotton apron ignites the fastest (at 10 s), while for the polypropylene PPE, flaming combustion starts between 42 and 60 s. The highest peak heat release rates were observed for the disposable apron (62.70 kW/m2), Prion Guard suit (61.57 kW/m2), and the cotton apron (62.81 kW/m2). The mean CO yields were the lowest for these PPEs. Although the Conall Health A and B/C aprons exhibited lower pHRR values, their toxic CO yield values were the highest. The most durable fabrics of the highest maximum tensile strength were the cotton apron (592.1 N) and the Prion Guard suit (274.5 N), which also exhibited the lowest electrification capability. Both fabrics showed the best abrasion resistance of 40,000 and 38,000 cycles, respectively. The abrasion values of other fabrics were significantly lower. The research revealed that the usage of PPE made from polypropylene in an oxygen-enriched atmosphere may pose a fire risk.


Subject(s)
COVID-19 , Prions , Atmosphere , Humans , Oxygen/analysis , Pandemics , Personal Protective Equipment , Polypropylenes , Static Electricity
5.
Prion ; 16(1): 78-83, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1915463

ABSTRACT

Creutzfeldt-Jakob disease (CJD) is a rare, fatal disease presenting with rapidly progressive neurological deficits caused by the accumulation of a misfolded form (PrPSc) of prion protein (PrPc). Coronavirus disease 2019 (COVID-19) is a primarily respiratory syndrome caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); many diverse neurological complications have been observed after COVID-19. We describe a young patient developing CJD two months after mild COVID-19. Presenting symptoms were visuospatial deficits and ataxia, evolving into a bedridden state with preserved consciousness and diffuse myoclonus. Diagnostic work-up was suggestive of CJD. The early age of onset and the short interval between respiratory and neurological symptoms might suggest a causal relationship: a COVID-19-related neuroinflammatory state may have induced the misfolding and subsequent aggregation of PrPSc. The present case emphasizes the link between neuroinflammation and protein misfolding. Further studies are needed to establish the role of SARS-CoV-2 as an initiator of neurodegeneration.


Subject(s)
COVID-19 , Creutzfeldt-Jakob Syndrome , Prions , COVID-19/complications , Creutzfeldt-Jakob Syndrome/metabolism , Humans , Prion Proteins , Prions/metabolism , SARS-CoV-2
6.
J Mol Evol ; 90(3-4): 227-230, 2022 08.
Article in English | MEDLINE | ID: covidwho-1906023

ABSTRACT

Self-replicating proteins or prions deviate from the central dogma of replication. The discovery of prion-like domains in coronavirus SARS-CoV-2 suggests their possible role in viral evolution. Here, we have outlined the possible role of self-replicating protein-like domains in the emergence of novel viruses. Further studies are needed to understand the function of these viral self-replicating protein-like domains and whether they could be antiviral target(s) for the development of effective antiviral agents in the future.


Subject(s)
COVID-19 , Prions , Viruses , Antiviral Agents , Humans , Prions/genetics , Protein Domains , SARS-CoV-2
7.
J Alzheimers Dis ; 88(2): 399-416, 2022.
Article in English | MEDLINE | ID: covidwho-1862562

ABSTRACT

COVID-19 emerged as a global pandemic starting from Wuhan in China and spread at a lightning speed to the rest of the world. One of the potential long-term outcomes that we speculate is the development of neurodegenerative diseases as a long-term consequence of SARS-CoV-2 especially in people that have developed severe neurological symptoms. Severe inflammatory reactions and aging are two very strong common links between neurodegenerative diseases and COVID-19. Thus, patients that have very high viral load may be at high risk of developing long-term adverse neurological consequences such as dementia. We hypothesize that people with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and aged people are at higher risk of getting the COVID-19 than normal adults. The basis of this hypothesis is the fact that SARS-CoV-2 uses as a receptor angiotensin-converting enzyme 2 to enter the host cell and that this interaction is calcium-dependent. This could then suggest a direct relationship between neurodegenerative diseases, ACE-2 expression, and the susceptibility to COVID-19. The analysis of the available literature showed that COVID-19 virus is neurotropic and was found in the brains of patients infected with this virus. Furthermore, that the risk of having the infection increases with dementia and that infected people with severe symptoms could develop dementia as a long-term consequence. Dementia could be developed following the acceleration of the spread of prion-like proteins. In the present review we discuss current reports concerning the prevalence of COVID-19 in dementia patients, the individuals that are at high risk of suffering from dementia and the potential acceleration of prion-like proteins spread following SARS-CoV-2 infection.


Subject(s)
COVID-19 , Dementia , Neurodegenerative Diseases , Prions , Aged , COVID-19/epidemiology , Humans , Neurodegenerative Diseases/epidemiology , SARS-CoV-2
8.
Viruses ; 13(12)2021 11 29.
Article in English | MEDLINE | ID: covidwho-1542801

ABSTRACT

Nestled within the Rocky Mountain National Forest, 114 scientists and students gathered at Colorado State University's Mountain Campus for this year's 21st annual Rocky Mountain National Virology Association meeting. This 3-day retreat consisted of 31 talks and 30 poster presentations discussing advances in research pertaining to viral and prion diseases. The keynote address provided a timely discussion on zoonotic coronaviruses, lessons learned, and the path forward towards predicting, preparing, and preventing future viral disease outbreaks. Other invited speakers discussed advances in SARS-CoV-2 surveillance, molecular interactions involved in flavivirus genome assembly, evaluation of ethnomedicines for their efficacy against infectious diseases, multi-omic analyses to define risk factors associated with long COVID, the role that interferon lambda plays in control of viral pathogenesis, cell-fusion-dependent pathogenesis of varicella zoster virus, and advances in the development of a vaccine platform against prion diseases. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations.


Subject(s)
Virology , Animals , Host-Pathogen Interactions , Humans , Pandemics/prevention & control , Prion Diseases/diagnosis , Prion Diseases/prevention & control , Prions/immunology , Prions/isolation & purification , Prions/pathogenicity , Vaccines , Virology/organization & administration , Virus Diseases/diagnosis , Virus Diseases/epidemiology , Virus Diseases/prevention & control , Virus Diseases/virology , Viruses/classification , Viruses/immunology , Viruses/isolation & purification , Viruses/pathogenicity
9.
Nat Commun ; 12(1): 5739, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1475293

ABSTRACT

Protein aggregates associated with neurodegenerative diseases have the ability to transmit to unaffected cells, thereby templating their own aberrant conformation onto soluble homotypic proteins. Proteopathic seeds can be released into the extracellular space, secreted in association with extracellular vesicles (EV) or exchanged by direct cell-to-cell contact. The extent to which each of these pathways contribute to the prion-like spreading of protein misfolding is unclear. Exchange of cellular cargo by both direct cell contact or via EV depends on receptor-ligand interactions. We hypothesized that enabling these interactions through viral ligands enhances intercellular proteopathic seed transmission. Using different cellular models propagating prions or pathogenic Tau aggregates, we demonstrate that vesicular stomatitis virus glycoprotein and SARS-CoV-2 spike S increase aggregate induction by cell contact or ligand-decorated EV. Thus, receptor-ligand interactions are important determinants of intercellular aggregate dissemination. Our data raise the possibility that viral infections contribute to proteopathic seed spreading by facilitating intercellular cargo transfer.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Extracellular Vesicles/metabolism , Membrane Glycoproteins/metabolism , Protein Aggregation, Pathological/virology , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism , Adult , Aged , Brain/pathology , Case-Control Studies , Cell Line , Endocytosis , Female , Humans , Intravital Microscopy , Male , Middle Aged , Prions/metabolism , Protein Aggregation, Pathological/pathology , Protein Folding , tau Proteins/metabolism
10.
Viruses ; 13(7)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1448933

ABSTRACT

Virus-induced infections of the central nervous system (CNS) are among the most serious problems in public health and can be associated with high rates of morbidity and mortality, mainly in low- and middle-income countries, where these manifestations have been neglected. Typically, herpes simplex virus 1 and 2, varicella-zoster, and enterovirus are responsible for a high number of cases in immunocompetent hosts, whereas other herpesviruses (for example, cytomegalovirus) are the most common in immunocompromised individuals. Arboviruses have also been associated with outbreaks with a high burden of neurological disorders, such as the Zika virus epidemic in Brazil. There is a current lack of understanding in Brazil about the most common viruses involved in CNS infections. In this review, we briefly summarize the most recent studies and findings associated with the CNS, in addition to epidemiological data that provide extensive information on the circulation and diversity of the most common neuro-invasive viruses in Brazil. We also highlight important aspects of the prion-associated diseases. This review provides readers with better knowledge of virus-associated CNS infections. A deeper understanding of these infections will support the improvement of the current surveillance strategies to allow the timely monitoring of the emergence/re-emergence of neurotropic viruses.


Subject(s)
Central Nervous System Diseases/virology , Central Nervous System Infections/epidemiology , Prion Diseases/epidemiology , Alphavirus/pathogenicity , Brazil/epidemiology , Central Nervous System/virology , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/physiopathology , Central Nervous System Infections/virology , Central Nervous System Viral Diseases/physiopathology , Central Nervous System Viral Diseases/virology , Enterovirus/pathogenicity , Flavivirus/pathogenicity , Herpesviridae/pathogenicity , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/virology , Prion Diseases/physiopathology , Prions/metabolism , Prions/pathogenicity , Simplexvirus/pathogenicity , Virus Diseases/virology , Viruses/pathogenicity , Zika Virus/pathogenicity
12.
Viruses ; 12(10)2020 10 18.
Article in English | MEDLINE | ID: covidwho-1305818

ABSTRACT

Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.


Subject(s)
Copper/metabolism , Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Prions/metabolism , Zinc/metabolism , Computational Biology , Meta-Analysis as Topic , Molecular Dynamics Simulation , Neurodegenerative Diseases/virology , Nucleocapsid/genetics , Nucleocapsid Proteins/genetics , Prions/genetics , Protein Domains , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Biochem Biophys Res Commun ; 554: 94-98, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1157142

ABSTRACT

The post-infection of COVID-19 includes a myriad of neurologic symptoms including neurodegeneration. Protein aggregation in brain can be considered as one of the important reasons behind the neurodegeneration. SARS-CoV-2 Spike S1 protein receptor binding domain (SARS-CoV-2 S1 RBD) binds to heparin and heparin binding proteins. Moreover, heparin binding accelerates the aggregation of the pathological amyloid proteins present in the brain. In this paper, we have shown that the SARS-CoV-2 S1 RBD binds to a number of aggregation-prone, heparin binding proteins including Aß, α-synuclein, tau, prion, and TDP-43 RRM. These interactions suggests that the heparin-binding site on the S1 protein might assist the binding of amyloid proteins to the viral surface and thus could initiate aggregation of these proteins and finally leads to neurodegeneration in brain. The results will help us to prevent future outcomes of neurodegeneration by targeting this binding and aggregation process.


Subject(s)
Amyloid/metabolism , COVID-19/metabolism , Heparin/metabolism , Neurodegenerative Diseases/metabolism , Protein Aggregation, Pathological , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Brain/virology , COVID-19/virology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Molecular Docking Simulation , Neurodegenerative Diseases/virology , Prions/metabolism , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , alpha-Synuclein/metabolism , tau Proteins/metabolism
14.
Viruses ; 13(1)2020 12 29.
Article in English | MEDLINE | ID: covidwho-1004759

ABSTRACT

Due to the COVID-19 pandemic and multiple devastating forest fires, the 2020 meeting of the Rocky Mountain Virology Association was held virtually. The three-day gathering featured talks describing recent advances in virology and prion research. The keynote presentation described the measles virus paradox of immune suppression and life-long immunity. Special invited speakers presented information concerning visualizing antiviral effector cell biology in mucosal tissues, uncovering the T-cell tropism of Epstein-Barr virus type 2, a history and current survey of coronavirus spike proteins, a summary of Zika virus vaccination and immunity, the innate immune response to flavivirus infections, a discussion concerning prion disease as it relates to multiple system atrophy, and clues for discussing virology with the non-virologist. On behalf of the Rocky Mountain Virology Association, this report summarizes selected presentations.


Subject(s)
Societies, Scientific , Virology , Animals , Anniversaries and Special Events , Antiviral Agents , COVID-19 , Flavivirus Infections/immunology , Herpesvirus 4, Human , Humans , Immunity , Pandemics , Prions , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Zika Virus
15.
Protein Pept Lett ; 28(5): 573-588, 2021.
Article in English | MEDLINE | ID: covidwho-918981

ABSTRACT

AIMS: The aim of this study was to create a new version of the PentaFOLD algorithm and to test its performance experimentally in several proteins and peptides. BACKGROUND: Synthetic vaccines can cause production of neutralizing antibodies only in case if short peptides form the same secondary structure as fragments of full-length proteins. The Penta- FOLD 3.0 algorithm was designed to check stability of alpha helices, beta strands, and random coils using several propensity scales obtained during analysis of 1730 3D structures of proteins. OBJECTIVE: The algorithm has been tested in the three peptides known to keep the secondary structure of the corresponding fragments of full-length proteins: the NY25 peptide from the Influenza H1N1 hemagglutinin, the SF23 peptide from the diphtheria toxin, the NQ21 peptide from the HIV1 gp120; as well as in the CC36 peptide from the human major prion protein. METHODS: Affine chromatography for antibodies against peptides accompanied by circular dichroism and fluorescence spectroscopy were used to check the predictions of the algorithm. RESULTS: Immunological experiments showed that all abovementioned peptides are more or less immunogenic in rabbits. The fact that antibodies against the NY25, the SF23, and the NQ21 form stable complexes with corresponding full-length proteins has been confirmed by affine chromatography. The surface of SARS CoV-2 spike receptor-binding domain interacting with hACE2 has been shown to be unstable according to the results of the PentaFOLD 3.0. CONCLUSION: The PentaFOLD 3.0 algorithm (http://chemres.bsmu.by/PentaFOLD30.htm) can be used with the aim to design vaccine peptides with stable secondary structure elements.


Subject(s)
Algorithms , Peptides/chemistry , Proteins/chemistry , Vaccines, Subunit/chemistry , Vaccines, Synthetic/chemistry , Diphtheria Toxin/chemistry , HIV Envelope Protein gp120/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Models, Molecular , Prions/chemistry , Protein Conformation , Protein Structure, Secondary , Software , Spike Glycoprotein, Coronavirus/chemistry
16.
Int J Mol Sci ; 21(19)2020 Oct 02.
Article in English | MEDLINE | ID: covidwho-918207

ABSTRACT

Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.


Subject(s)
Brain/immunology , Immune System/immunology , Prion Diseases/immunology , Prions/immunology , Aging/immunology , Aging/pathology , Brain/metabolism , Disease Susceptibility , Humans , Immune System/metabolism , Immunomodulation/genetics , Prion Diseases/genetics , Prion Diseases/pathology , Prions/genetics
SELECTION OF CITATIONS
SEARCH DETAIL